1,801 research outputs found

    A quantum magnetic RC circuit

    Full text link
    We propose a setup that is the spin analog of the charge-based quantum RC circuit. We define and compute the spin capacitance and the spin resistance of the circuit for both ferromagnetic (FM) and antiferromagnetic (AF) systems. We find that the antiferromagnetic setup has universal properties, but the ferromagnetic setup does not. We discuss how to use the proposed setup as a quantum source of spin excitations, and put forward a possible experimental realization using ultracold atoms in optical lattices

    Pressure buildup during CO2 injection in brine aquifers using the Forchheimer equation

    Get PDF
    If geo-sequestration of CO2 is to be employed as a key emissions reduction method in the global effort to mitigate climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this talk, a new similarity solution is derived using the method of matched asymptotic expansions. By allowing for slight compressibility in the fluids and formation, the solution improves on previous work by not requiring the specification of an arbitrary radius of influence. A large-time approximation of the solution is then extended to account for non-Darcy inertial effects using the Forchheimer equation. Both solutions are verified by comparison with finite difference solutions. The results show that inertial losses will often be comparable, and sometimes greater than, the viscous Darcy-like losses associated with the brine displacement, although this is strongly dependent on formation porosity and permeability

    Improving the worthiness of the Elder problem as a benchmark for buoyancy driven convection models

    Get PDF
    An important trapping mechanism associated with the geosequestration of CO~2~ is that of dissolution into the formation water. Although supercritical CO~2~ is significantly less dense than water, experimental data reported in the literature show that the density of an aqueous solution of CO~2~ could be slightly greater. Under normal situations, the transfer of gas to solution is largely controlled by the relatively slow process of molecular diffusion. However, the presence of variable densities can trigger off gravity instabilities leading to much larger-scale convection processes. Such processes can potentially enhance rates of dissolution by an order of magnitude. Consequently there is a need for future performance assessment models to incorporate buoyancy driven convection (BDC). A major issue associated with BDC models is that of grid convergence when benchmarking to the Elder problem. The Elder problem originates from a heat convection experiment whereby a rectangular Hele-Shaw cell was heated over the central half of its base. A quarter of the way through the experiment, Elder (1967) observed six plumes, with four narrow plumes in the center and two larger plumes at the edges. As the experiment progressed, only four plumes remained. The issue is that depending on the grid resolution used when seeking to model this problem, modelers have found that different schemes yield steady states with either one, two or three plumes. The aim of this paper is to clarify and circumvent the issue of multiple steady state solutions in the Elder problem using a pseudospectral method

    Pseudospectral methods provide fast and accurate solutions for the horizontal infiltration equation

    Get PDF
    An extremely fast and accurate pseudospectral numerical method is presented, which can be used in inverse methods for estimating soil hydraulic parameters from horizontal infiltration or desorption experiments. Chebyshev polynomial dierentiation in conjunction with the flux concentration formulation of Philip (1973) results in a numerical solution of high order accuracy that is directly dependent on the number of Chebyshev nodes used. The level of accuracy (< 0:01% for 100 nodes) is confirmed through a comparison with two dierent, but numerically demanding, exact closed-form solutions where an infinite derivative occurs at either the wetting front or the soil surface. Application of our computationally ecient method to estimate soil hydraulic parameters is found to take less than one second using modest laptop computer resources. The pseudospectral method can also be applied to evaluate analytical approximations, and in particular, those of Parlange and Braddock (1980) and Parlange et al (1994) are chosen. It is shown that both these approximations produce excellent estimates of both the sorptivity and moisture profile across a wide range of initial and boundary conditions and numerous physically realistic diusivity functions

    Capillary processes increase salt precipitation during CO2 injection in saline formations

    Get PDF
    An important attraction of saline formations for CO2 storage is that their high salinity renders their associated brine unlikely to be identified as a potential water resource in the future. However, high salinity can lead to dissolved salt precipitating around injection wells, resulting in loss of injectivity and well deterioration. Earlier numerical simulations have revealed that salt precipitation becomes more problematic at lower injection rates. This article presents a new similarity solution, which is used to study the relationship between capillary pressure and salt precipitation around CO2 injection wells in saline formations. Mathematical analysis reveals that the process is strongly controlled by a dimensionless capillary number, which represents the ratio of the CO2 injection rate to the product of the CO2 mobility and air-entry pressure of the porous medium. Low injection rates lead to low capillary numbers, which in turn are found to lead to large volume fractions of precipitated salt around the injection well. For one example studied, reducing the CO2 injection rate by 94 % led to a tenfold increase in the volume fraction of precipitated salt around the injection well

    Revisiting Salvucci’s Semi-analytical Solution for Bare Soil Evaporation with New Consideration of Vapour Diffusion and Film Flow

    Get PDF
    Bare soil evaporation is controlled by a combination of capillary flow, vapour diffusion and film flow. Relevant analytical solutions mostly assume horizontal flow conditions and ignore gravitational effects. Salvucci (1997) provided a rare example of a semi-analytical solution for vertical bare soil evaporation. However, they did not explicitly represent vapour diffusion and film flow, which are likely to account for a significant proportion of total flow during vertical evaporation from soils. Vapour diffusion and film flow can be incorporated via Salvucci’s desorptivity parameter, which represents the proportionality constant relating Stage 2 cumulative evaporation to the square root of time under horizontal flow conditions. The objective of this article is to implement vapour diffusion and film flow within Salvucci’s semi-analytical solution and test its performance by comparison with isothermal numerical simulation and relevant experimental data. The following important conclusions are drawn. Analytical solutions that assume horizontal flow conditions are inadequate for understanding vertical evaporation problems because they overestimate evaporation rates and mostly predict vapour diffusion and film flow to be of negligible influence. Salvucci’s semi-analytical solution is effective at predicting the order-of-magnitude reduction in evaporation caused by gravitational effects. However, it is unable to identify the correct importance of vapour diffusion and film flow because these processes can only be represented through its desorptivity parameter

    Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice.

    Get PDF
    Tauopathies are widespread neurodegenerative disorders characterised by the intracellular accumulation of hyperphosphorylated tau. Especially in Alzheimer's disease, pathological alterations in the retina are discussed as potential biomarkers to improve early diagnosis of the disease. Using mice expressing human mutant P301S tau, we demonstrate for the first time a straightforward optical approach for the in vivo detection of fibrillar tau in the retina. Longitudinal examinations of individual animals revealed the fate of single cells containing fibrillar tau and the progression of tau pathology over several months. This technique is most suitable to monitor therapeutic interventions aimed at reducing the accumulation of fibrillar tau. In order to evaluate if this approach can be translated to human diagnosis, we tried to detect fibrillar protein aggregates in the post-mortem retinas of patients that had suffered from Alzheimer's disease or Progressive Supranuclear Palsy. Even though we could detect hyperphosphorylated tau, we did not observe any fibrillar tau or Aß aggregates. In contradiction to previous studies, our observations do not support the notion that Aβ or tau in the retina are of diagnostic value in Alzheimer's disease

    Impact of land cover, rainfall and topography on flood risk in West Java

    Get PDF
    Flooding represents around 32% of total disasters in Indonesia and disproportionately affects the poorest of communities. The objective of this study was to determine significant statistical differences, in terms of river catchment characteristics, between regions in West Java that reported suffering from flood disasters and those that did not. Catchment characteristics considered included various statistical measures of topography, land-use, soil-type, meteorology and river flow rates. West Java comprises 154 level 9 HydroSHEDS sub-basin regions. We split these regions into those where flood disasters were reported and those where they were not, for the period of 2009 to 2013. Rainfall statistics were derived using the CHIRPS gridded precipitation data package. Statistical estimates of river flow rates, applicable to ungauged catchments, were derived from regionalisation relationships obtained by stepwise linear regression with river flow data from 70 West Javanese gauging stations. We used Kolmogorov–Smirnov tests to identify catchment characteristics that exhibit significant statistical differences between the two sets of regions. Median annual maximum river flow rate (AMRFR) was found to be positively correlated with plantation cover. Reducing plantation land cover from 20 to 10% was found to lead to a modelled 38% reduction in median AMRFR. AMRFR with return periods greater than 10 years were found to be negatively correlated with wetland farming land cover, suggesting that rice paddies play an important role in attenuating extreme river flow events. Nevertheless, the Kolmogorov–Smirnov tests revealed that built land cover is the most important factor defining whether or not an area is likely to report flood disasters in West Java. This is presumably because the more built land cover, the more people available to experience and report flood disasters. Our findings also suggest that more research is needed to understand the important role of plantation cover in aggravating median annual maximum river flow rates and wetland farming cover in mitigating extreme river flow events
    • …
    corecore